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ABSTRACT

The urgent need to mitigate environmental impacts in the construction industry drives the exploration of sustainable
practices, such as the use of recycled materials in concrete production. The primary objective of this study was
to enhance the predictability of compressive strength in the concrete through the application of advanced machine
learning (ML) techniques, specifically Gradient Boosting Regression (GBR) and Random Forest Regression (RFR). Using
a comprehensive dataset of 353 eco-friendly concrete samples, the study carefully developed and validated these models
to evaluate their performance. The findings exposed that the GBR model outperformed the RFR model, obtained
an R? of 0.97 in training phase and 0.96 in testing phase, the findings supported further with root mean squared
error (RMSE) of 1.99 and 3.06, and by mean absolute error (MAE) of 1.44 and 2.38 for training and testing phases
respectively, where indicating high predictive accuracy. Conclusively, the broader adoption of GBR model for similar
applications recommended by the study and points towards future research directions to integrate more diverse datasets
and investigate more predictive models to improve sustainable construction practices.

Keywords: Sustainable construction, Data clustering techniques, Sustainable materials, Al in construction, Sustainable

environment, Machine learning

1. Introduction

Global climate change continues to influence many
countries around the world, demanding a unified
global response to thrive sustainable development
and reduce its effects [1, 2]. This global initiative
helps to tackle this challenge through technics that

foster low-carbon growth [3]. The construction sec-
tor cannot be excluded from these efforts, which is
known for its significant contributions to global car-
bon emissions [4, 5]. For example, strategies like
incorporating recycled materials from construction
and demolition waste into new concrete mixes not
only help mitigate carbon emissions but also manage
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waste effectively [6-8]. While there are extensive re-
search emphasizing on how the construction industry
can reduce the effects of global warming, the use of
recycled materials remained less explored [7]. These
alternative materials provide a sustainable solution
by substituting traditional concrete constituents, in-
creasing environmental benefits and sustainability.

In response to the urgent need for sustainable
construction practices, recent advancements in ML
applications offer promising solutions for optimiz-
ing material properties and enhancing eco-efficiency.
For instance, scientific research utilized a hybrid
K-means clustering with different ML methods, in-
cluding REG, CART, GENLIN, CHAID, ANN, and SVM,
to optimize the workability of concrete mixtures [9].
The study included 103 datasets for the modeling
and prediction [9]. The results demonstrating a sig-
nificant improvement in slump and flow tests for
sustainable mixes [9]. Similarly, another research de-
veloped models using ANNs and Decision Trees (DT)
to enhance the efficiency of using Blast Furnace Slag
(BFS) and Fly Ash in concrete. Incorporated a com-
prehensive 1030 datasets, which contributed to both
material and environmental sustainability by accu-
rately predicting compressive strength [10]. Further,
a study used an innovative approach involved a hy-
brid AI model that integrated Least Squares Support
Vector Regression (LSSVR) with Grey Wolf Optimiza-
tion (GWO) to address the empirical limitations in
predicting the compressive strength of foamed con-
crete, a crucial factor for structural design [11].
Furthermore, another study adopted a comprehensive
data-driven approach employing multiple ML tech-
niques including DT, RF, GB, SVM, and MLP to predict
the compressive strength of fiber-reinforced polymer
confined concrete, showcasing enhanced prediction
accuracy and methodology that could be applied to
various environmental conditions [12]. These studies
collectively signify the potential of ML in revolution-
izing sustainable practices in the construction sector
by providing more accurate, efficient, and environ-
mentally friendly solutions. For a detailed review of
additional ML applications in sustainable construc-
tion materials, refer to Table 1.

The construction industry faces significant chal-
lenges in reducing its environmental impact while
maintaining the structural integrity of buildings [17,
18]. Traditional methods for predicting the com-
pressive strength of concrete are often limited in
their ability to account for the complex interac-
tions between various materials [13], especially in
sustainable concrete mixes that include recycled or
alternative materials [13]. These limitations can lead
to inaccurate predictions, which in turn affect the
safety, durability, and sustainability of construction

projects [12, 19]. As the demand for eco-friendly con-
struction materials grows, there is a pressing need for
more advanced and accurate methods to predict the
performance of these materials [20, 21]. Thus, this
study aimed to apply advanced ML models, specif-
ically GBR and RFR. To improve the predictability
of compressive strength in concrete. These models
were selected for their proven ability to deliver high
accuracy predictions and their power in handling
complex, non-linear data often found in concrete
compositions. As evidenced by their successful ap-
plication in different contexts (Table 2), such as
predicting compressive and tensile strength in sus-
tainable geopolymer concrete [22], forecasting real
GDP growth [23], and predicting daily confirmed
COVID-19 cases [24]. The research question guid-
ing this study was: How can the predictability of
compressive strength in sustainable concrete mixes
be improved using advanced ML models? This study
addresses this question by demonstrating that both
GBR and RFR models not only improve prediction ac-
curacy but also offer a reliable approach to managing
the complexities associated with sustainable concrete
mixtures, thereby contributing to more effective and
sustainable construction practices.

The primary objective of this study is: (i) To evalu-
ate and compare the predictive ability of GBR and
RFR models by obtaining the compressive strength
of concrete. This will determine which model offers
precise, and efficient accuracy and reliability. (ii) To
increase the existing models for compressive strength
of concrete prediction by synthesizing advanced ML
models. (iii) To perform sensitivity analysis to iden-
tify the most influential variables in predicting the
compressive strength of concrete, thereby enhancing
the understanding of which factors most significantly
impact model accuracy and reliability. Therefore,
contributing to the development of more effective,
accurate, and dependable predictive tools for sustain-
able construction materials.

2. Methodology
2.1. Models’ development

The model development began with the collection
of data, where a comprehensive dataset contain-
ing variables that are suitable for the compressive
strength of concrete (Fig. 1). In the next stage the
dataset underwent a shuffling or randomization pro-
cess to avoid any biases. Therefore, ensuring the
integrity of the training process. Then, the data was
divided into training and testing sets. Where 70% was
used for training to make a strong model learning, and
the remainder (30%) for testing to assess the models’
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Fig. 1. Model’s development flowchart.

predictive performance. Next, the GBR and RFR mod-
els were trained. Subsequently, models underwent a
process called ‘tuning the hyperparameters’ to opti-
mize their performance. Afterward, the models were
used to check their accuracy. So, if the accuracy was
found to be not appropriate then more tuning was
applied. Once the models fit the desired accuracy
conditions they were validated. Subsequently, the
models that passed all evaluation stages were saved
as the final models. Finally, a sensitivity analysis was
performed to assess the influence of different input
variables.

2.2. Data collection and analysis

For the development of the AI models, datasets
were obtained from open-source records [28]. These
datasets consist of 353 instances of eco-friendly con-
crete samples, detailing their compressive strength.
The data encompasses various parameters including
the content of water (W), cement (C), fine aggre-
gate (FA), coarse aggregate (CA), recycled aggregate

(RA), and the age of the samples (AS), along with the
compressive strength (CS) values. The dataset is split
into two subsets: a calibration subset and a validation
subset. The calibration subset, which comprises 70%
of the dataset (247 records), is utilized for the imple-
mentation and development of the regression models.
The remaining 106 records form the validation sub-
set, which is used to assess the performance of the
proposed Al models. Statistical characteristics such as
maximum value, minimum value, mean, standard de-
viation, skewness, and kurtosis are calculated for each
variable and presented in Table 3. The data reveals
a well distribution and follows approximately a nor-
mal distribution (Fig. 2a). The compressive strength
values range from 13 to 88.3, with a mean of 42.11,
which supports the normal distribution. These prop-
erties confirm that the dataset is robust enough for the
predictive modeling of the compressive strength of
concrete. Moreover, correlation coefficient matrix is
evaluated for better understanding the relationships
between the variables in the dataset and is presented
in Fig. 2b.
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Table 3. Data statistical characteristics.

Features Count Mean StD Min Max 25% 50% 75% Skewness  Kurtosis
Water (kg/m3) 353 184.14 27.14 120.00 244.00 172.43 180.00 195.00 0.29 0.39
C (kg/m3) 353 394.86 83.94 220.00 750.00 350.00 400.00 436.00 1.11 2.98
FA (kg/m3) 353 710.27 108.45 365.00 1020.00 685.00 720.00 730.00 0.32 1.50
CA (kg/m3) 353 564.83 438.71 0.00 1366.00 0.00 629.50 940.00 -0.10 —1.45
RA (kg/m3) 353 504.27 414.59 0.00 1259.00 0.00 443.71 972.00 0.22 -1.41
AS (days) 353 45.25 43.96 7.00 180.00 28.00 28.00 56.00 1.78 2.25
CS (MPa) 353 42.11 13.13 13.00 88.30 33.60 41.20 48.50 0.65 0.78
75 55 100
= 25 £ 55 ] &
0 - : 0 - - 0 /—/\—"\-—
150 200 250 200 400 600 400 600 800 1000
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Fig. 2. (a) Frequency distribution of features using histograms, (b) Correlation coefficient relationship matrix.
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2.3. Employed ML models

In this study, two advanced ML models (RFR and
GBR), were used to predict the compressive strength
of concrete. These models were selected for their
ability to handle complex, robustness, and their non-
linear relationships within the data. Both models
were trained and validated using the obtained and
described datasets in the above section, with hyper-
parameter tuning applied to optimize their predictive
performance.

2.3.1. Random Forest Regression (RFR)

RFR is an ensemble learning method that oper-
ates by constructing multiple decision trees during
training and outputting the mean prediction of each
tree separately [23]. It decreases overfitting by av-
eraging the results. Therefore, improving accuracy,
and efficiency. The RFR model was trained using the
available dataset to predict compressive strength of
concrete. The general formula for RFR is given in the
following equation [23]:

1 M
Fn) =2 fn ) €3]
m=1

Where, f,(x) is the prediction of the m™ tree and M is
the total number of trees in the forest. This integration
aims to minimize the discrepancy of the predictions,
decreasing the danger of overfitting typically merged
with decision trees.

2.3.2. Gradient Boosting Regression (GBR)

GBR algorithm (model) is an advanced ensemble
method that builds models sequentially. where each
new model correcting errors created by the previ-
ous ones. This method reduces the loss function by
consolidating the predictions of multiple weak mod-
els [24].:Generally decision trees, to create a robust
predictive model. GBR was employed to predict the
compressive strength using the same dataset [24, 29,
30]. The general formula for GBR is given by:

M
F(X) =) ¥mhm (x) + const 2)

m=1

where h,,(x) are the weak learners (decision trees), yn,
are the coefficients, and M is the number of boosting
stages. At each stage m, a new tree hp,(x) is fitted on
the negative gradient of the loss function evaluated
at the current model Fy_1(x), effectively reducing
the residual errors of the model. The update rule for

adding new learners can be described by [23]:
En(x) =Fp_1 (x) + thm ) 3

where y,, is chosen to minimize the overall loss L.
This is typically done by solving [23]:

N
Ym = argmin LG/, En1 () + Yinhim () 4)
i=1

GBR model encompasses multiple hyperparameters
like the number of trees M, the learning rate (which
scales the contribution of each tree), the depth of each
tree, and the loss function [31].

2.4. K-means clustering

The dataset was stratified into distinct groups by
K-means clustering, which boosted the explicitness
of the ML models. By categorizing the dataset into
clusters on their similarity, the approach allowed a
more detailed analysis, adopting the predictive al-
gorithms to the patterns built-in within each cluster
[32, 33]. Clusters numbers were optimally identified
through the method of elbow, confirming that the
segmentation accurately caught the inherent vari-
ations in the prediction efficiencies [34, 35]. This
approach offered understanding into the condition
dependencies of environmental and treatment within
the data, enhancing the accuracy and relevance
for each unique cluster of the model’s predictions
[32, 33].

2.5. Models’ performance assessment

Accuracy, precision, and efficacy of all ML mod-
els in rainfall prediction employed in this study is
quantitatively evaluated through error metrics. These
metrics provide a statistical measure of the perfor-
mance of models [36]. These metrics are mandatory
as they display the predictions’ performance in com-
parison to the observed data, directing the better
tunning of models for increased precision [37]. In this
section the main error metrics used in this study were
discussed. They are including R-Squared (R?), Root
Mean Squared Error (RMSE), Mean Absolute Error
(MAE), and Median Absolute Error (MedAE). Each of
them offers a specific perspective on the predictive
ability of models.

(i) R-Squared (R?): Reflects the proportion of
variance in the dependent variable explained
by the independent variables, indicating the
goodness of fit. A value closer to 1 suggests
a model with minimal error in prediction
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[38, 39].
R2—1 Sum of squares of residuals ©)
N Total sum of squares
Ay

> i—y)

(ii) Root Mean Squared Error (RMSE): Measures
the square root of the average of the squares
of the errors, providing insight into the typical
size of the errors. Like MSE, lower RMSE val-
ues signify more accurate predictions [38, 40].

1< )
MSE = |- i — yi
RMS = ?:1 i—yD (7)

(iii) Mean Absolute Error (MAE): Computes the
average of the absolute differences between
predicted and actual observations, providing
a straightforward measure of prediction error
without emphasizing outliers. Lower MAE val-
ues reflect more accurate predictions [40, 41].

1 n
MAE = = " lyi — yi
> _lyi-Jil (8)

i=1

(iv) Median Absolute Error (MedAE): Identifies
all absolute differences of the median. Thus,
providing a strong measure less impacted by
skewed data, and outliers. It expose a central
point of errors’ prediction [42].

MedAE = median(|yi — yi|) 9

where y; represents the observed values, yi is the
predicted values, ¥ indicates the mean of the observed
values, and n stands for the number of observations.
These metrics collaboratively aim to evaluate the ac-
curacy, precision, and effectiveness of each model.
Therefore, helping in the improvement of model’s
performance.

2.6. Sensitivity analysis

The sensitivity analysis was performed to deter-
mine the influence of different input variables on the
compressive strength predictions of the used models.
By systematically eliminating one input at a time,
while keeping others constant, the analysis deter-
mined which factors had the most significant impact

on the model’s output. This process helped to under-
stand the strength and reliability of the models. So,
confirming that the predictions were not inappropri-
ately influenced by any single variable. The insights
obtained from the sensitivity analysis contributed to
refining of the models and improving their overall
accuracy and applicability.

3. Results representation

3.1. Analysis of model performance in predictive
accuracy

The performance metrics of the RFR and GBR
models across both training and testing phases were
examined, as illustrated in Fig. 3. For the RFR model,
during the training phase, the model achieved an R?
of 0.96 with an RMSE of 2.48, a MAE of 1.83, and a
MedAE of 1.34. In the testing phase, the RFR model’s
performance declined drastically, recording an R? of
0.90, an RMSE of 4.27, MAE of 3.24, and MedAE of
2.40 compared to its training phase. Conversely, the
GBR model demonstrated a stronger consistency be-
tween the training and testing phases. In the training
phase, the GBR model reported an R? of 0.97, RMSE
of 1.99, MAE of 1.44, and MedAE of 0.99. During
testing phase, the performance metrics recorded as an
R? of 0.96, RMSE of 3.06, MAE of 2.38, and MedAE of
1.94. These results demonstrate the robust predictive
capabilities of GBR model, where it is showing sig-
nificantly superior accuracy and lower error metrics
compared to the RFR model across different phases of
model evaluation.

3.2. Comparative evaluation of GBR and RFR model
efficiencies

A detailed comparison of the performance metrics
for both models GBR and RFR is presented in the cur-
rent section, as shown in the bar charts of Fig. 4. In the
training phase, the GBR model exhibits profoundly
high R? = 0.97 compared to the RFR model’s as R? =
0.96, indicating slightly more accurate predictions.
The GBR model also achieved lower error rates with
a RMSE = 1.99 and a MAE = 1.44, vs the RFR’s
RMSE = 2.48 and MAE = 1.83. The MedAE follows a
similar pattern, with the GBR model recorded as 0.99
compared to the RFR’s of 1.34.

In the testing phase, the GBR model continues
to outperform the RFR model drastically. The GBR
model maintained a high R?> = 0.96, while the RFR
model drops to 0.90. The disparity in RMSE and MAE
further illustrates the GBR model’s robustness, with
values of 3.06 and 2.38 respectively, compared to the
RFR’s 4.27 and 3.24. The MedAE for GBR is 1.94, sig-



124

AUIQ TECHNICAL ENGINEERING SCIENCE 2024;1:116-128

RFR Training Set RFR Testing Set
R2: 0.96 % 1 R%0.90 %
801 RMSE: 2.48 /{ o 807 RMSE: 4.27 /%
MAE: 1.83 e MAE: 3.24 o -
S MedAE: 1.34 S MedAE: 2.40 Y o
£ 60 o 607
o) he}
2 o
5 5
'§ 40 - "02_, 40
[a W) [ W}
20 - 20 @
.//
20 40 60 80 20 40 60 80
Measured CS % (a) Measured CS %
GBR Training Set GBR Testing Set
R 0.97 » 01 R%0.96 .
804 RMSE: 1.99 ,l.' RMSE: 3.06 -
MAE: 1.44 U MAE: 2.38 @g
e MedAE: 0.99 # _ MedAE: 1.94 o
= > 60 - ¥o
& 601 &)
o) hei
2 2
Q o
B 40 > 4
am ~ T
o&
| 0
01 g% 20 ;?a
@ o
20 40 60 80 20 40 60 80

Measured CS %

Measured CS %

(b)

Fig. 3. Performance metrics of predictive modeling on training and testing phases; (a) RFR model, (b) GBR model.

nificantly lower than RFR’s 2.40. Conclusively, these
metrics indicated that the GBR model not only per-
formed better consistently across both the training
and testing phases but also demonstrated superior sta-
bility in its predictive accuracy. The evidence strongly
supports the use of the GBR model for more reliable
and precise predictions in practical applications of
compressive strength modeling in eco-friendly con-
crete.

3.3. Enhancing result reliability with Taylor diagram
analysis

The Taylor diagram provides a concise visual rep-
resentation of how closely the predictions from the
GBR and RFR models align with observed data by
plotting correlation coefficients (CC), and standard

deviations (StD). In this diagram, the GBR model
exhibits a smaller StD, and a higher CC compared
to the RFR model, particularly in the testing phase.
This indicates that the GBR model predictions are not
only more accurate but also more consistent with the
observed data, showing less variability and greater
predictive reliability (Fig. 5).

These findings from the Taylor diagram supports
the findings provided earlier in the paper. The robust
performance of the GBR model, as evidenced by its
closer proximity to the observed data point in the
diagram, validates the model’s superior performance
metrics discussed in Sections 3.1 and 3.2. Specifically,
the GBR model’s higher R?, and lower RMES, MAE,
and MedAE across both training and testing phases
demonstrate its effectiveness and stability as a predic-
tive tool. This visual and statistical validation through
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Fig. 5. Model evaluation through Taylor diagram: GBR vs. RFR.

the Taylor diagram analysis enhances the reliability
of the results, confirming the GBR model as a more
reliable choice for predicting compressive strength of
concrete.

3.4. Sensitivity analysis results

For the RFR model, the exclusion of water signifi-
cantly degraded performance, with the R?> dropping
from 0.96 to 0.87 in training and from 0.90 to 0.79
in testing (Table 4). This change corresponded with
an increase in RMSE from 2.48 to 4.56 in training
and from 4.27 to 6.24 in testing. Similarly, excluding
cement saw the training R? decrease to 0.84 and
the testing R? to 0.73, alongside increases in RMSE
to 5.19 and 7.08, respectively. The removal of fine
aggregate (FA) and recycled aggregate (RA) also ad-
versely affected both training and testing metrics but
to a lesser degree compared to water and cement.
In contrast, the GBR model exhibited resilience to
the exclusion of inputs but still showed variability in
performance metrics. The exclusion of water resulted
in a decrease in training R? from 0.97 to 0.89 and

in testing R? from 0.96 to 0.84, along with increases
in RMSE to 3.86 and 5.87, respectively. Notably, ex-
cluding cement had a profound impact, with training
RMSE rising to 4.68 and testing RMSE to 5.36. How-
ever, excluding coarse aggregate (CA) had minimal
impact on the GBR model’s performance compared
to other inputs. Overall, the sensitivity analysis high-
lights the critical roles that water and cement play
in the predictive accuracy of both models. Their ex-
clusion leads to significant decreases in performance
metrics, indicating that these components are crucial
for accurate predictions. The analysis also demon-
strates the GBR model’s generally stronger robustness
against input exclusion compared to the RFR model,
suggesting its superior handling of missing or incom-
plete data scenarios.

4. Discussion

The analysis presented in this study on the predic-
tive accuracy of GBR and RFR models for compressive
strength of Concrete provided important insights into
the effectiveness of advanced ML techniques in the
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Table 4. Comparative impact of input removal on model efficacy for RFR and GBR.

RFR model
Inputs Training Testing
Water C FA CA RA AS
(kg/m3) (kg/m®) (kg/m3) (kg/m3) (kg/m3®) (days) R? RMSE MAE MedAE R?> RMSE MAE MedAE
0.96 2.48 1.83 1.34 0.9 427 324 24
Excluded 0.87 456 2.89 1.63 0.79 6.24 4.66 3.17
Excluded 0.84 519 328 1.8 0.73 7.08 5.04 3.53
Excluded 0.94 3.02 214 1.33 0.85 521 39 261
Excluded 0.96 247 176 1.23 0.91 412 32 283
Excluded 0.96 2.58 1.89 1.32 0.9 429 334 267
Excluded 0.91 3.9 3.02 2.62 0.86 5.17 422 3.44
GBR model
Inputs Training Testing
Water C FA CA RA AS
(kg/m3) (kg/m3®) (kg/m®) (kg/m3) (kg/m3) (days) R? RMSE MAE MedAE R? RMSE MAE MedAE
0.97 1.99 1.44 0.99 0.96 3.06 2.38 1.94
Excluded 09 3.86 226 1.18 0.84 5.87 4.04 2.73
Excluded 0.86 4.68 2.87 1.57 0.86 5.36 3.69 2.57
Excluded 0.97 2.3 1.75 1.35 0.94 359 279 25
Excluded 096 234 1.7 1.22 0.95 3.18 258 2.39
Excluded 0.96 2.4 1.75 1.23 0.95 328 248 1.9
Excluded 0.92 3.57 2.75 2.3 0.87 531 4.48 4.15

context of sustainable construction materials. This
section compares our findings with those from other
studies, which have similarly employed ML models
to predict the mechanical properties of eco-friendly
concrete materials. In the current research, the GBR
model demonstrated superior performance with an
R? of 0.97 in training and 0.96 in testing phases,
accompanied by RMSE of 1.99 and 3.06, respectively,
significantly outperforming the ANN model of [43]
on prediction of CS of concrete with (R? for training
phase ranging 0.917-0.945, and R? for testing phase
ranging 0.814-0.922), and the Fuzzy Polynomial Neu-
ral Networks (FPNN) of [44], the model 6 achieved
an R? of 0.8194 in training and 0.8209 in testing,
with corresponding RMSE values of 14.4463 MPa in
training and 9.5555 MPa in testing phase. Where it
indicates a significant low R? with very high RMSE
for both training and testing compared to our study.
Similarly, while the best performing model (M5P tree
model) in [45] achieved an R? of 0.8872, and accom-
panied with its higher RMSE of 7.1874 suggests less
precise predictions than our GBR model. Compared
to the Multiple Additive Regression Trees (MART)
used in [46], which reported an R? of 0.9543, our
models not only show higher accuracy but also better
consistency between training and testing phases, em-
phasizing the robustness and potential of advanced
ensemble methods like GBR for enhancing predictive
performance in eco-friendly concrete applications.

5. Conclusion

The construction industry faces significant environ-
mental challenges, particularly in managing waste
and reducing carbon emissions. This study aimed to
enhance the predictability of compressive strength in
recycled concrete through advanced ML techniques,
specifically GBR and RFR models. Employed a dataset
of 353 eco-friendly concrete samples, these models
were developed and trained, rigorously testing their
performance. The findings indicated that the GBR
model exhibited superior predictive accuracy, ob-
tained an R? of 0.97 in training phase and 0.96 in
testing phase, with corresponding RMSE values of
1.99 and 3.06 respectively. These results underscore
the effectiveness of GBR model in handling complex,
non-linear relationships in recycled concrete data.
The study recommends the adoption of GBR model
for similar applications and suggests further explo-
ration into integrating additional predictive variables
and testing alternative ML algorithms to broaden the
understanding and applications of sustainable con-
struction materials.
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